Autoassociative neural networks and noise filtering

نویسندگان

  • José R. Dorronsoro
  • Vicente López
  • Carlos Santa Cruz
  • Juan A. Sigüenza
چکیده

In this work, we will introduce linear autoassociative neural (AN) network filters for the removal of additive noise from one-dimensional (1-D) time series. The AN network will have a (2 + 1) (2 + 1) architecture, and for fixed, we will show how to choose the optimal value and output coordinate from square error estimates between the AN filter outputs and the clean series. The frequency response of AN filters will also be studied, and they will be shown to act as matched band filters. A noise variance estimate will also be derived from this analysis. We will numerically illustrate their behavior on two examples and will also compare their theoretical performance with that of optimal Wiener filters.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptive Filtering Strategy to Remove Noise from ECG Signals Using Wavelet Transform and Deep Learning

Introduction: Electrocardiogram (ECG) is a method to measure the electrical activity of the heart which is performed by placing electrodes on the surface of the body. Physicians use observation tools to detect and diagnose heart diseases, the same is performed on ECG signals by cardiologists. In particular, heart diseases are recognized by examining the graphic representation of heart signals w...

متن کامل

Adaptive Filtering Strategy to Remove Noise from ECG Signals Using Wavelet Transform and Deep Learning

Introduction: Electrocardiogram (ECG) is a method to measure the electrical activity of the heart which is performed by placing electrodes on the surface of the body. Physicians use observation tools to detect and diagnose heart diseases, the same is performed on ECG signals by cardiologists. In particular, heart diseases are recognized by examining the graphic representation of heart signals w...

متن کامل

Instrument Surveillance and Calibration Verification Through Plant Wide Monitoring Using Autoassociative Neural Networks

The approach to instrument surveillance and calibration verification (ISCV) through plant wide monitoring proposed in this paper is an autoassociative neural network (AANN) which will utilize digitized data presently available in the Safety Parameter Display computer system from Florida Power Corporations Crystal River #3 nuclear power plant. An autoassociative neural network is one in which th...

متن کامل

Surveillance and Calibration Verification Using Autoassociative Neural Networks

The approach to instrument surveillance and calibration verification (ISCV) through plant wide monitoring proposed in this paper is the use of an autoassociative neural network (AANN) which will utilize digitized data presently available in the Safety Parameter Display computer system from Florida Power Corporations Crystal River #3 nuclear power plant. An autoassociative neural network is one ...

متن کامل

Short-term synaptic facilitation improves information retrieval in noisy neural networks

Short-term synaptic depression and facilitation have been found to greatly influence the performance of autoassociative neural networks. However, only partial results, focused for instance on the computation of the maximum storage capacity at zero temperature, have been obtained to date. In this work, we extended the study of the effect of these synaptic mechanisms on autoassociative neural net...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE Trans. Signal Processing

دوره 51  شماره 

صفحات  -

تاریخ انتشار 2003